Multigraded minimal free resolutions of simplicial subclutters

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal Free Resolutions and Asymptotic Behavior of Multigraded Regularity

Let S be a standard N-graded polynomial ring over a field k, let I be a multigraded homogeneous ideal of S, and let M be a finitely generated Z-graded Smodule. We prove that the resolution regularity, a multigraded variant of CastelnuovoMumford regularity, of IM is asymptotically a linear function. This shows that the well known Z-graded phenomenon carries to the multigraded situation.

متن کامل

On simple A-multigraded minimal resolutions

Let A be a semigroup whose only invertible element is 0. For an A-homogeneous ideal we discuss the notions of simple i-syzygies and simple minimal free resolutions of R/I. When I is a lattice ideal, the simple 0-syzygies of R/I are the binomials in I. We show that for an appropriate choice of bases every A-homogeneous minimal free resolution of R/I is simple. We introduce the gcd-complex ∆gcd(b...

متن کامل

Shifts in Resolutions of Multigraded Modules

Upper bounds are established on the shifts in a minimal resolution of a multigraded module. Similar bounds are given on the coefficients in the numerator of the BackelinLescot rational expression for multigraded Poincaré series. Let K be a field and S = K[x1, . . . , xn] the polynomial ring with its natural n-grading. When I is an ideal generated by monomials in the variables x1, . . . , xn, th...

متن کامل

Finite Free Resolutions and 1-Skeletons of Simplicial Complexes

A technique of minimal free resolutions of Stanley–Reisner rings enables us to show the following two results: (1) The 1-skeleton of a simplicial (d − 1)-sphere is d-connected, which was first proved by Barnette; (2) The comparability graph of a non-planar distributive lattice of rank d − 1 is d-connected.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2021

ISSN: 0097-3165

DOI: 10.1016/j.jcta.2020.105339